Copied to
clipboard

G = C23×C32⋊C6order 432 = 24·33

Direct product of C23 and C32⋊C6

direct product, metabelian, supersoluble, monomial

Aliases: C23×C32⋊C6, C6216D6, He32C24, C626(C2×C6), (C2×C62)⋊4C6, (C2×C62)⋊6S3, C32⋊(C23×C6), (C23×He3)⋊4C2, (C2×He3)⋊2C23, C322(S3×C23), (C22×He3)⋊9C22, C3⋊S3⋊(C22×C6), (C3×C6)⋊(C22×C6), C6.50(S3×C2×C6), C3.2(S3×C22×C6), (C22×C3⋊S3)⋊6C6, (C23×C3⋊S3)⋊2C3, (C2×C6).73(S3×C6), (C3×C6)⋊2(C22×S3), (C22×C6).35(C3×S3), (C2×C3⋊S3)⋊6(C2×C6), SmallGroup(432,558)

Series: Derived Chief Lower central Upper central

C1C32 — C23×C32⋊C6
C1C3C32He3C32⋊C6C2×C32⋊C6C22×C32⋊C6 — C23×C32⋊C6
C32 — C23×C32⋊C6
C1C23

Generators and relations for C23×C32⋊C6
 G = < a,b,c,d,e,f | a2=b2=c2=d3=e3=f6=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, fdf-1=d-1e-1, fef-1=e-1 >

Subgroups: 2089 in 501 conjugacy classes, 182 normal (12 characteristic)
C1, C2, C2, C3, C3, C22, C22, S3, C6, C6, C23, C23, C32, C32, D6, C2×C6, C2×C6, C24, C3×S3, C3⋊S3, C3×C6, C3×C6, C22×S3, C22×C6, C22×C6, He3, S3×C6, C2×C3⋊S3, C62, C62, S3×C23, C23×C6, C32⋊C6, C2×He3, S3×C2×C6, C22×C3⋊S3, C2×C62, C2×C62, C2×C32⋊C6, C22×He3, S3×C22×C6, C23×C3⋊S3, C22×C32⋊C6, C23×He3, C23×C32⋊C6
Quotients: C1, C2, C3, C22, S3, C6, C23, D6, C2×C6, C24, C3×S3, C22×S3, C22×C6, S3×C6, S3×C23, C23×C6, C32⋊C6, S3×C2×C6, C2×C32⋊C6, S3×C22×C6, C22×C32⋊C6, C23×C32⋊C6

Smallest permutation representation of C23×C32⋊C6
On 72 points
Generators in S72
(1 13)(2 14)(3 15)(4 16)(5 8)(6 7)(9 22)(10 21)(11 23)(12 24)(17 19)(18 20)(25 53)(26 54)(27 49)(28 50)(29 51)(30 52)(31 38)(32 39)(33 40)(34 41)(35 42)(36 37)(43 71)(44 72)(45 67)(46 68)(47 69)(48 70)(55 61)(56 62)(57 63)(58 64)(59 65)(60 66)
(1 20)(2 19)(3 6)(4 5)(7 15)(8 16)(9 10)(11 12)(13 18)(14 17)(21 22)(23 24)(25 65)(26 66)(27 61)(28 62)(29 63)(30 64)(31 71)(32 72)(33 67)(34 68)(35 69)(36 70)(37 48)(38 43)(39 44)(40 45)(41 46)(42 47)(49 55)(50 56)(51 57)(52 58)(53 59)(54 60)
(1 4)(2 3)(5 20)(6 19)(7 17)(8 18)(9 24)(10 23)(11 21)(12 22)(13 16)(14 15)(25 35)(26 36)(27 31)(28 32)(29 33)(30 34)(37 54)(38 49)(39 50)(40 51)(41 52)(42 53)(43 55)(44 56)(45 57)(46 58)(47 59)(48 60)(61 71)(62 72)(63 67)(64 68)(65 69)(66 70)
(1 31 70)(2 67 34)(3 63 30)(4 27 66)(5 61 26)(6 29 64)(7 51 58)(8 55 54)(9 59 50)(10 53 56)(11 35 72)(12 69 32)(13 38 48)(14 45 41)(15 57 52)(16 49 60)(17 40 46)(18 43 37)(19 33 68)(20 71 36)(21 25 62)(22 65 28)(23 42 44)(24 47 39)
(1 19 11)(2 12 20)(3 22 5)(4 6 21)(7 10 16)(8 15 9)(13 17 23)(14 24 18)(25 27 29)(26 30 28)(31 33 35)(32 36 34)(37 41 39)(38 40 42)(43 45 47)(44 48 46)(49 51 53)(50 54 52)(55 57 59)(56 60 58)(61 63 65)(62 66 64)(67 69 71)(68 72 70)
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)(17 18)(19 20)(21 22)(23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)

G:=sub<Sym(72)| (1,13)(2,14)(3,15)(4,16)(5,8)(6,7)(9,22)(10,21)(11,23)(12,24)(17,19)(18,20)(25,53)(26,54)(27,49)(28,50)(29,51)(30,52)(31,38)(32,39)(33,40)(34,41)(35,42)(36,37)(43,71)(44,72)(45,67)(46,68)(47,69)(48,70)(55,61)(56,62)(57,63)(58,64)(59,65)(60,66), (1,20)(2,19)(3,6)(4,5)(7,15)(8,16)(9,10)(11,12)(13,18)(14,17)(21,22)(23,24)(25,65)(26,66)(27,61)(28,62)(29,63)(30,64)(31,71)(32,72)(33,67)(34,68)(35,69)(36,70)(37,48)(38,43)(39,44)(40,45)(41,46)(42,47)(49,55)(50,56)(51,57)(52,58)(53,59)(54,60), (1,4)(2,3)(5,20)(6,19)(7,17)(8,18)(9,24)(10,23)(11,21)(12,22)(13,16)(14,15)(25,35)(26,36)(27,31)(28,32)(29,33)(30,34)(37,54)(38,49)(39,50)(40,51)(41,52)(42,53)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60)(61,71)(62,72)(63,67)(64,68)(65,69)(66,70), (1,31,70)(2,67,34)(3,63,30)(4,27,66)(5,61,26)(6,29,64)(7,51,58)(8,55,54)(9,59,50)(10,53,56)(11,35,72)(12,69,32)(13,38,48)(14,45,41)(15,57,52)(16,49,60)(17,40,46)(18,43,37)(19,33,68)(20,71,36)(21,25,62)(22,65,28)(23,42,44)(24,47,39), (1,19,11)(2,12,20)(3,22,5)(4,6,21)(7,10,16)(8,15,9)(13,17,23)(14,24,18)(25,27,29)(26,30,28)(31,33,35)(32,36,34)(37,41,39)(38,40,42)(43,45,47)(44,48,46)(49,51,53)(50,54,52)(55,57,59)(56,60,58)(61,63,65)(62,66,64)(67,69,71)(68,72,70), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)>;

G:=Group( (1,13)(2,14)(3,15)(4,16)(5,8)(6,7)(9,22)(10,21)(11,23)(12,24)(17,19)(18,20)(25,53)(26,54)(27,49)(28,50)(29,51)(30,52)(31,38)(32,39)(33,40)(34,41)(35,42)(36,37)(43,71)(44,72)(45,67)(46,68)(47,69)(48,70)(55,61)(56,62)(57,63)(58,64)(59,65)(60,66), (1,20)(2,19)(3,6)(4,5)(7,15)(8,16)(9,10)(11,12)(13,18)(14,17)(21,22)(23,24)(25,65)(26,66)(27,61)(28,62)(29,63)(30,64)(31,71)(32,72)(33,67)(34,68)(35,69)(36,70)(37,48)(38,43)(39,44)(40,45)(41,46)(42,47)(49,55)(50,56)(51,57)(52,58)(53,59)(54,60), (1,4)(2,3)(5,20)(6,19)(7,17)(8,18)(9,24)(10,23)(11,21)(12,22)(13,16)(14,15)(25,35)(26,36)(27,31)(28,32)(29,33)(30,34)(37,54)(38,49)(39,50)(40,51)(41,52)(42,53)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60)(61,71)(62,72)(63,67)(64,68)(65,69)(66,70), (1,31,70)(2,67,34)(3,63,30)(4,27,66)(5,61,26)(6,29,64)(7,51,58)(8,55,54)(9,59,50)(10,53,56)(11,35,72)(12,69,32)(13,38,48)(14,45,41)(15,57,52)(16,49,60)(17,40,46)(18,43,37)(19,33,68)(20,71,36)(21,25,62)(22,65,28)(23,42,44)(24,47,39), (1,19,11)(2,12,20)(3,22,5)(4,6,21)(7,10,16)(8,15,9)(13,17,23)(14,24,18)(25,27,29)(26,30,28)(31,33,35)(32,36,34)(37,41,39)(38,40,42)(43,45,47)(44,48,46)(49,51,53)(50,54,52)(55,57,59)(56,60,58)(61,63,65)(62,66,64)(67,69,71)(68,72,70), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72) );

G=PermutationGroup([[(1,13),(2,14),(3,15),(4,16),(5,8),(6,7),(9,22),(10,21),(11,23),(12,24),(17,19),(18,20),(25,53),(26,54),(27,49),(28,50),(29,51),(30,52),(31,38),(32,39),(33,40),(34,41),(35,42),(36,37),(43,71),(44,72),(45,67),(46,68),(47,69),(48,70),(55,61),(56,62),(57,63),(58,64),(59,65),(60,66)], [(1,20),(2,19),(3,6),(4,5),(7,15),(8,16),(9,10),(11,12),(13,18),(14,17),(21,22),(23,24),(25,65),(26,66),(27,61),(28,62),(29,63),(30,64),(31,71),(32,72),(33,67),(34,68),(35,69),(36,70),(37,48),(38,43),(39,44),(40,45),(41,46),(42,47),(49,55),(50,56),(51,57),(52,58),(53,59),(54,60)], [(1,4),(2,3),(5,20),(6,19),(7,17),(8,18),(9,24),(10,23),(11,21),(12,22),(13,16),(14,15),(25,35),(26,36),(27,31),(28,32),(29,33),(30,34),(37,54),(38,49),(39,50),(40,51),(41,52),(42,53),(43,55),(44,56),(45,57),(46,58),(47,59),(48,60),(61,71),(62,72),(63,67),(64,68),(65,69),(66,70)], [(1,31,70),(2,67,34),(3,63,30),(4,27,66),(5,61,26),(6,29,64),(7,51,58),(8,55,54),(9,59,50),(10,53,56),(11,35,72),(12,69,32),(13,38,48),(14,45,41),(15,57,52),(16,49,60),(17,40,46),(18,43,37),(19,33,68),(20,71,36),(21,25,62),(22,65,28),(23,42,44),(24,47,39)], [(1,19,11),(2,12,20),(3,22,5),(4,6,21),(7,10,16),(8,15,9),(13,17,23),(14,24,18),(25,27,29),(26,30,28),(31,33,35),(32,36,34),(37,41,39),(38,40,42),(43,45,47),(44,48,46),(49,51,53),(50,54,52),(55,57,59),(56,60,58),(61,63,65),(62,66,64),(67,69,71),(68,72,70)], [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16),(17,18),(19,20),(21,22),(23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72)]])

80 conjugacy classes

class 1 2A···2G2H···2O3A3B3C3D3E3F6A···6G6H···6U6V···6AP6AQ···6BF
order12···22···23333336···66···66···66···6
size11···19···92336662···23···36···69···9

80 irreducible representations

dim111111222266
type+++++++
imageC1C2C2C3C6C6S3D6C3×S3S3×C6C32⋊C6C2×C32⋊C6
kernelC23×C32⋊C6C22×C32⋊C6C23×He3C23×C3⋊S3C22×C3⋊S3C2×C62C2×C62C62C22×C6C2×C6C23C22
# reps114122821721417

Matrix representation of C23×C32⋊C6 in GL10(𝔽7)

1000000000
0100000000
0060000000
0006000000
0000100000
0000010000
0000001000
0000000100
0000000010
0000000001
,
1000000000
0100000000
0060000000
0006000000
0000600000
0000060000
0000006000
0000000600
0000000060
0000000006
,
6000000000
0600000000
0010000000
0001000000
0000600000
0000060000
0000006000
0000000600
0000000060
0000000006
,
0100000000
6600000000
0001000000
0066000000
0000006100
0000006000
0000000061
0000000060
0000610000
0000600000
,
1000000000
0100000000
0010000000
0001000000
0000060000
0000160000
0000000600
0000001600
0000000006
0000000016
,
2000000000
5500000000
0050000000
0022000000
0000060000
0000600000
0000000010
0000000016
0000006100
0000000100

G:=sub<GL(10,GF(7))| [1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,6],[6,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,6],[0,6,0,0,0,0,0,0,0,0,1,6,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,1,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,6,0,0,0,0,0,0,0,0,1,0,0,0,0,0,6,6,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,6,6,0,0,0,0,0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,6,6,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,6,6,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,6,6],[2,5,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,5,2,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,6,0,0] >;

C23×C32⋊C6 in GAP, Magma, Sage, TeX

C_2^3\times C_3^2\rtimes C_6
% in TeX

G:=Group("C2^3xC3^2:C6");
// GroupNames label

G:=SmallGroup(432,558);
// by ID

G=gap.SmallGroup(432,558);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,4037,537,14118]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^3=e^3=f^6=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,f*d*f^-1=d^-1*e^-1,f*e*f^-1=e^-1>;
// generators/relations

׿
×
𝔽